217 research outputs found

    A channel aware adaptive modem for underwater acoustic communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    GENESI: Wireless sensor networks for structural monitoring

    Get PDF
    The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the projec

    A Channel-Aware Adaptive Modem for Underwater Acoustic Communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    A phase II trial of gemcitabine plus carboplatin in advanced transitional cell carcinoma of the urothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated the effectiveness of cisplatin-based combinations in patients with advanced transitional cell carcinoma(TCC) of the urothelium. Concern over cisplatin toxicity instigated a search for alternative regimens. The aim of the study was to evaluate the activity and tolerability of gemcitabine plus carboplatin combination as first-line treatment in patients with advanced transitional cell carcinoma of the urothelium.</p> <p>Methods</p> <p>Patients with advanced TCC were treated with gemcitabine 1200 mg/m<sup>2 </sup>on days 1 and 8 and carboplatin area under the concentration-time curve(AUC) 5 on day 1 every 21 days.</p> <p>Results</p> <p>Out of 41 patients, thirty-nine were evaluable for efficacy and 41 for toxicity. A median of 5 cycles (range 1–6) was administered. Overall response rate was 46.2% (95% confidence interval: 32–65%) including 10.3% complete responses and 35.9% partial responses. The median time to progression and median overall survival were 7.5 months (95% confidence interval: 6.6–8.4 months) and 13.6 months (95% confidence interval: 10.2–17.0 months), respectively. Grade 3/4 neutropenia, anemia and thrombocytopenia were observed in 36.6%, 26.8, and 24.4% of patients, respectively. Non-hematological toxicity was generally mild. Grade 3 vomiting occurred in 1 (2.4%) patients.</p> <p>Conclusion</p> <p>The gemcitabine plus carboplatin combination is active in advanced TCC with acceptable toxicity and needs to be evaluated further and compared with other non-cisplatin-containing regimens.</p> <p>Trial registration</p> <p>ISRCTN88259320</p
    • …
    corecore